

Copernicusar-áætlunin og aðrar fjarmælingar tengdar hafinu

Angel Ruiz-Angulo

TUB

Iceland in the middle of the AMOC pathways

Schemes of oceanic circulation around Iceland

The saga of one particular deep current south of Iceland

Brakstad et al., 2023, Koman et al., 2022, Rossby et al. 2018

Hafrannsóknastofnun (MFRI-Hafró) Hydrographic Observations (CTD) (1990-2020)

Building up a story from one profile?

Schemes of oceanic circulation around Iceland

Brakstad et al., 2023

Numerical methods to the rescue!

SJÁVARÚTVEGS

RÁÐSTEFNAN

2024

Use of a realistic simulation of the North Atlantic sub-polar gyre

CROCO (ex-ROMS) numerical model Nesting approach (forcing at boundaries by NATL) 7-years long (after 2-years spin up) 2-km horizontal resolution 80 terrain-following vertical levels Daily forcing No tides

ROCO

¹Le Corre et al., 2020

Insights from the realistic simulation

Spreading of the Bottom Boundary Current

- → Origin: Faroe Bank Channel and North of the Iceland Faroe Ridge.
- ightarrow Spreading of the water masses in the **Iceland basin**
- → Particles have high values of vorticity suggesting a spreading by highly turbulent motions

What we used so far: In-situ data High resolution numerical model **Tracers (particles)**

The bottom current south of Iceland (bathymetry controlled)

Is this current important for our fishing industry?

Langoustine fishing grounds

Is this current important for our fishing industry?

https://www.vsv.is/our-products/groundfish/cod/

Is this current important for deep sea corals?

Changing climate in the Arctic and North Atlantic

2024

Changing climate and the BBC (scary movie)

2024

Årthun et al., 2023

Changing climate and the BBC (scary movie)

Unfortunatelly YES. we observe that the ongoing warming at the surface can reach the bottom.

The hyperactive eddies over the IFR act as a pathway between the surface and the interior/bottom!

Mesoscale turbulence on top the IFR from SWOT data and GIGATI 1

The VHF reaches the the ISOW and those are bad news in the current changing climate...

SJÁVARÚTVEGS RÁÐSTEFNAN

Sections of w'T' at two locations of the IFR, crossing mesoscale structures (inserts show relative vorticity at the surface) de Marez et al., under-review

What was needed for this study?

Hafró in-situ data (\$\$\$)

Copernicus data (open source) Low-resolution models and data

University of Iceland HPC computer.

French super-high resolution numerical simulation *GIGATL1: 1km!!!*

-- open-source --

State of the art satellite data SWOT (2km)

Many hours of #NerdSpace

What are the implications of our findings?

- The Iceland-Faroe Ridge is a hotspot and the primary region where surface warming can be effectively transported to bottom waters.
- It is very likely that this bottom warming have implications to the benthic ecosystems.
- We need more data and must continue monitoring the changes in temperature and salinity south of Iceland.
- To corroborate our proposed processes, ongoing monitoring is essential, and the current monitoring sections should be extended.
- While numerical Models valuable for explaining processes and identifying data gaps, whithout data for validation they are ineffective.
- We need to develop methods for explaining observed processes and effectively communicate our knowledge to stakeholders.

